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A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general
idea of the method is to perform a simulation simultaneously in several unconnected boxes which can ex-
change particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase. The composi-
tions of these boxes yield coexisting points on the binodal. However, since the overall composition is fixed, at
least one of the boxes will contain an interface. We show that this does not affect the results, provided that the
interface has no net curvature. We coin the name “Helmholtz-ensemble method,” because the method is related
to the well-known Gibbs-ensemble method, but the volume of the boxes is constant. Since the box volumes are
constant, we expect that this method will be particularly useful for lattice models. The accuracy of the
Helmholtz-ensemble method is benchmarked against known coexistence curves of the three-dimensional Ising
model with excellent results.
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I. INTRODUCTION

Phase coexistence of fluids is an important subject from
both a scientific and a technological viewpoint. For example,
the complex phase behavior of oil, water, and surfactants is
interesting in its own right. Phase separation is also an im-
portant purification mechanism in the process industry.

Since the advent of the Metropolis algorithm �1� in the
1950s, Monte Carlo methods have been used extensively to
simulate equilibrium properties of fluids. The Metropolis
technique lets us sample a representative part of configura-
tion space, which enables us to calculate thermodynamic
properties of the system.

An important goal of simulations of immiscible fluids is
to find the compositions of the coexisting phases. To this
end, Panagiotopoulos introduced the so-called Gibbs-
ensemble method almost 20 years ago �2�. In his elegant
scheme, the entire system is partitioned into two simulation
boxes which can exchange both particles and volume �2,3�.
This method depends on the property that the systems tend to
avoid the formation of an interface. After equilibration, no
interface is found in either box. When the overall composi-
tion is in the two-phase regime, each box assumes the same
composition as one of the coexisting homogeneous phases.
The results agree well with compositions that were calcu-
lated by earlier methods.

Elegant as this scheme may be, the Gibbs-ensemble tech-
nique breaks down when one of the phases becomes very
dense, since then the exchange of monomers between the
systems becomes a highly unlikely event �4�. Lattice models
of monomeric species do not suffer from this drawback. Lat-
tice models have been in use for a long time in statistical
mechanics. They usually require less computational time and
memory than their continuum counterparts, and structural
analysis of such systems is usually much simpler. Paradoxi-
cally, the determination of phase coexistence points has
proved to be more involved with lattice models than with
continuous-space models.

For instance, the Gibbs-ensemble method can be applied
to lattice models only with great difficulty. The principal
problem that one has to solve is incorporating volume
changes. In order to maintain periodic boundary conditions,
only entire lattice layers can be transferred from one system
to another. The probability that such an event occurs is very
low due to the large number of contacts. Moreover, as the
volumes can only be changed in relatively large discrete
steps, the equilibrium volume ratio between the coexisting
phases cannot generally be reached. The convergence speed
is further deteriorated if polymers are present. However,
Mackie et al. devised a scheme to improve the convergence
behavior �5,6�.

Indirect methods to determine phase coexistence points
are more often used for lattice systems at the moment. Indi-
rect methods, in contrast with direct methods, generally
make use of a single simulation box. It is usually not pos-
sible to sample the concentrated and dilute phase directly
from a single box because it is difficult to locate the phase
boundaries. This is especially true near the critical point.

Instead, the free energy per unit volume of the system is
calculated for a range of overall compositions. The coexist-
ence points can then be calculated by means of a Maxwell
construction �or variant thereof�. Several authors reported
quantitative results for coexistence curves calculated using
the indirect determination. The development of the indirect
method applied to water-oil-amphiphile systems is due to
Larson et al. �7�. Their method has been modified recently to
study amphiphile solubility and phase behavior in supercriti-
cal CO2 �8,9�. Yan et al. used an indirect method to obtain an
accurate coexistence curve for the three-dimensional �3D�
Ising lattice, which is equivalent to a binary mixture with
symmetric interaction potentials �10�.

However, the problems associated with the indirect
method are twofold. First, by comparison elaborate calcula-
tions are required in order to obtain accurate results, since
the initial composition has to be varied over a broad range in
order to obtain a single point on the coexistence curve. Sec-
ond, in practice only systems that separate into two phases
can be modeled. It is in principle possible to simulate phase
behavior of a multiphase system, but this involves the calcu-*Electronic address: henk.zweistra@wur.nl
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lation of a multidimensional Maxwell construction. The
computational cost of such a calculation is astronomical as
the concentration of each component would have to be var-
ied independently.

Finally, we mention the Kofke method to trace the coex-
istence curve �11–13�. This method cannot be categorized as
a direct or indirect method to calculate phase coexistence
points. Rather, it depends on a priori methods to find a single
point on the binodal. The other points are then found by
integrating the Clausius-Clapeyron equation along the coex-
istence line. This method proved to be useful and it is exten-
sively used. In its original form, it may be unstable �4� and
numerical errors make that the result tends to grow away
from the “true” coexistence line. Mehta and Kofke proposed
a modification of the algorithm �14� that circumvents the
numerical instability. Their modification works especially
well for compositions that are not too close to the critical
point. At any rate, this method still depends on a priori meth-
ods so the demand for fast and accurate direct and indirect
methods will not diminish because of the development of the
Kofke integration.

In this paper, we introduce a direct method to determine
phase coexistence points by means of Monte Carlo simula-
tions. This paper is organized as follows. In the next section
�II�, we will describe the method in general terms and pro-
vide justification for our method based on thermodynamic
arguments. In Sec. III, we will benchmark the accuracy of
the method against known results for the 3D Ising lattice.

II. DESCRIPTION OF THE METHOD

The general idea of the method is to simulate phase co-
existence in several unconnected boxes which can exchange
particles. Most of the boxes will contain a homogeneous
phase. The composition of those boxes is used to determine
the phase coexistence points. In contrast with the Gibbs en-
semble, volume changes are not needed, but we deliberately
allow an interface to be formed in one of the boxes instead.
Boxes that contain an interface are not used for the determi-
nation of coexistence points.

If monomeric, isotropic particles are involved, only one
type of perturbation is needed: particle displacements. This is
necessary and sufficient to reach the phase-separated state
from any random configuration. If more complex particles
are involved, also particle rotations, reorientations and pos-
sibly reconfigurations should be implemented. These pertur-
bations are not specific for this method but have to be em-
ployed in any correct Monte Carlo sampling. We will restrict
the discussion to monomeric, isotropic species, but without
loss of generality. The principle of the method is not altered
in any way if more elaborate perturbations of the particles
have to be included in the Monte Carlo scheme.

The formalism can be justified on thermodynamic
grounds. Consider a macroscopic, phase-separated system
containing P coexisting phases, which are connected by I
surfaces. At thermodynamic equilibrium, the chemical poten-
tial of any component and the pressure are constant through-
out the system.

We are free to arbitrarily partition the macroscopic system
into several unconnected simulation boxes which can ex-

change particles. Particle displacement is sufficient to induce
phase separation in a macroscopic mixture. Hence phase
separation will also occur in a collection of particle-
interchanging boxes. However, this does not happen for each
box individually, but rather for the ensemble of boxes as a
whole. It is unlikely that a homogeneous phase will develop
an interface because an interface contributes to the free en-
ergy of the system �4�.

The important consequence of this is that as many boxes
as possible will contain a homogeneous phase. One or sev-
eral boxes will have to contain an interface, because the
overall composition is conserved. The number of interface-
containing boxes will not exceed I, the number of interfaces
that were present in the macroscopic system, because the
interface area is minimal at thermodynamic equilibrium. We
conclude that we can find the compositions of the coexisting
phases directly if we perform the simulation in at least P+ I
particle-interchanging boxes simultaneously. After equilibra-
tion, we identify boxes that contain a homogeneous phase as
coexisting phases in the macroscopic system.

Note that the computational demands of this method scale
much more favorably with the number of coexisting phases
than indirect methods. In the present method, only a few
boxes need to be added in a single computer experiment,
while in the case of indirect methods, another dimension
should be added to the Maxwell construction for each addi-
tional phase. However, we will restrict the discussion in this
paper to two-phase systems.

Several features of the present method will be illustrated
by means of an example: simulating phase coexistence of an
binary liquid mixture. We will use lowercase letters a and b
to refer to the components in the mixture. The composition
of the system is determined by the overall volume fractions
of the components: �a and �b.

a and b are only partially miscible, therefore the mixture
will segregate into an a-rich and a b-rich phase. These phases
are named here simply A and B, respectively. We are inter-
ested in the compositions of the coexisting phases: �a

A �the
volume fraction of component a in phase A�, �b

B �the volume
fraction of component b in phase B�, and so on.

Two phases and one interface exist, so we will use three
simulation boxes and enforce full periodic boundary condi-
tions. This is schematically depicted in Fig. 1. The system is
initialized by filling the boxes at random for a given initial
composition. During equilibration, particles are exchanged
between boxes I, II, and III �indicated by bidirectional ar-
rows�. Particles can also be displaced within a single box.
The boxes are therefore in thermodynamic equilibrium inter-
nally and with the other boxes.

It is usually not possible to predict which boxes will de-
velop a homogeneous phase from the random configuration
of particles. In this specific simulation, boxes I and III con-
tain homogeneous phases B and A after equilibration. There-
fore we use the composition of boxes I and III to find the
coexistence points: �a

B=�a
I , �b

B=�b
I , �a

A=�a
III, and �b

A=�b
III.

Box II must contain an interface because the total compo-
sition is conserved. The initial �or overall� composition of the
boxes determines the composition of box II, and thus the
volume that is occupied by phase A in II. The phase volume
fraction of phase A in box II is indicated by �A. �A deter-
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mines the shape of phase A in box II since the shape of the
phase is adjusted in order to minimize the surface area
�Fig. 1�.

At low �A, phase A forms a droplet �d� inside a continu-
ous phase B �Fig. 1�. If �A is increased above a certain
droplet-to-slab transition volume fraction �d→s

A , the forma-
tion of a “slab” of phase A becomes favorable since it has a
smaller surface area than a droplet of the same volume. The
system passes a second transition �s→c

A at even higher values
of �A. The situation is now reversed: phase A forms a con-
tinuous phase �c� around phase B.

The shape of phase A in box II is of relevance because a
pressure difference, known as the Laplace pressure, exists
across a curved interface �15�. The Laplace pressure influ-
ences the chemical potentials of the box containing the inter-
face, and also the chemical potentials of the collection of
boxes as a whole. The composition of the homogeneous
boxes is therefore affected by a nonzero average curvature of
the interface. Box II should contain an interface with vanish-
ing average curvature in order to obtain accurate results.
Note that an interface with vanishing average curvature is
formed when �d→s

A ��A��s→c
A .

It is therefore of interest to estimate �d→s
A and �s→c

A . For
the moment, we will assume that surface roughness does not
contribute to the total surface area in a significant way, and
the composition of the different phases on both sides of the
interface does not depend on the average curvature of the
interface. Surface free energy is then the only quantity that
needs to be minimized. For a given �A, phase A adjusts its
shape to minimize the surface free energy. �d→s

A then follows
from simple geometric considerations, since it is the value of
�A where the surface area of a droplet equals the surface area
of a slab. �s→c

A follows from equivalent arguments, and we
obtain

�d→s
A =

1

3
� 2

�
� 0.266, �1�

�s→c
A = 1 −

1

3
� 2

�
� 0.734. �2�

To a first approximation, we expect to find an on average flat
interface if the phase volume fractions of the box containing

the interface lie roughly in between these values.
The approximations used in this argument may prove to

be quite severe. Larson et al. observed that the interface of a
segregated system with symmetric interactions can exhibit a
large degree of surface roughness �7�. Moreover, �a

II,A and
�a

II,B are not completely independent of the curvature of the
surface. Nonetheless, it gives some idea of how the system
reacts to a mismatched phase volume fraction.

Direct assessment of �A is not straightforward, as it re-
quires the determination of a dividing plane between the two
phases. It is much more convenient to measure �a

II, the vol-
ume fraction of component a in system II, instead. In certain
special cases, it is possible to check that �A�0.5, which is
desirable in any situation. For example, when the phases are
strongly segregated, �a

II,A�1��a
II,B therefore �A and �a

II are
roughly equal in this case. Furthermore, if interactions be-
tween the particles are symmetric, the volume fractions of
the phases must be equal if the volume fractions of the par-
ticles are equal, which is easy to check.

If one is interested in a complex model at high tempera-
tures, no direct relation between �A and �a

II is known. In such
a case, one should check if a simulation with a slightly dif-
ferent initial composition leads to the same composition of
the homogeneous phases. Alternatively, one could use for
instance Widom’s test-particle method �16� to determine the
chemical potentials of the equilibrated system, and check if
they do not depend on �a. If this is the case, it can be as-
sumed that the interface is on average flat and that the chemi-
cal potential �and thus the compositions� are correct.

In the case that a curved interface is formed, one can
simply adjust the overall composition and redo the simula-
tion. It is therefore in principle always possible to find the
compositions of two coexisting phases, even if the interac-
tion potentials are highly asymmetric. The range of applica-
bility is therefore not affected by the possible occurrence of a
curved interface.

It would be worthwhile for future research to find expres-
sions to improve the estimation of �A and the average cur-
vature of the interface from �a

II. Such an analysis should at
least take the surface tension and roughness and the size of
the droplet into account. If these expressions are available, it
is possible to define explicit criteria which the composition
of the interface box must satisfy in order to have a interface
without net curvature.

If the interface has no average curvature, we can use the
compositions of the boxes that contain homogeneous phase
to obtain a direct determination of the phase coexistence
points. In contrast to the original Gibbs-ensemble method
�2�, volume exchanges are unnecessary in this scheme. This
methodology is therefore both easier to implement and much
more suitable for lattice systems.

We propose the term “Helmholtz-ensemble method” for
our method for several reasons. First, equilibration of the
boxes is equivalent to minimization of the Helmholtz energy.
The collection of boxes comprises a system within the ca-
nonical ensemble. Equilibrium is reached when the Helm-
holtz free energy of such a system is minimal �15�. More-
over, we would like to indicate the connection with the
Gibbs-ensemble method. The most important difference be-
tween the present method and the Gibbs-ensemble method is

FIG. 1. Schematic illustration of the proposed method for a
binary mixture. See text for details.
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that the volumes of the boxes are constant in the present
method, while it is variable in the Gibbs-ensemble method.
The fact that the simulations are performed at constant vol-
ume also explains our choice for the term Helmholtz-
ensemble method.

Gibbs-ensemble and Helmholtz-ensemble calculations
both yield coexistence points at constant pressure. The pres-
sures are the same in each box, as this is one of the condi-
tions of phase coexistence at thermodynamic equilibrium.
This is in contrast with the method by Nelson et al. �17�.
This method is based on performing a simulation in two
boxes simultaneously. Particle exchanges between the boxes
are allowed for all but one of the particle types. This method
has been used to calculate partition coefficients of oil in wa-
ter in the presence and absence of amphiphiles.

Although similar to the present method in the sense that
the box volumes are constant and that only particle displace-
ments are necessary to reach equilibrium, there are funda-
mental differences. In Nelson et al.’s method, an osmotic
pressure difference arises between the boxes, because par-
ticle exchange between the boxes is disallowed for one of the
species. Nelson et al.’s method is therefore not suitable to
calculate phase coexistence points at arbitrary compositions.

III. NUMERICAL RESULTS FOR THE 3D ISING
MODEL

In this section, we will present results that validate our
method. Up to this point, we did not make a distinction be-
tween continuous and lattice systems. The Helmholtz-
ensemble method is equally applicable to both types of sys-
tems. We will discuss only lattice models in this section,
because it is to expected that the Helmholtz ensemble is su-
perior to the Gibbs-ensemble method for lattice systems.

We chose the 3D Ising lattice to benchmark the method.
The 3D Ising lattice is equivalent to phase separation of a
binary mixture with symmetric interaction potentials. The
Ising model is convenient choice because the properties of
this model are reasonably well known. Moreover, the Ising

model is symmetric with respect to the exchange of two spe-
cies. As a result, the interface is guaranteed to be on average
flat if �a=�b= 1

2 .
The Helmholtz ensemble is equally applicable to systems

with asymmetric interactions. If we apply the Helmholtz-
ensemble method to such a model, we have to explicitly
check that the interface is on average flat. The overall com-
position should be adjusted accordingly if this is not the case.

In the 3D Ising lattice, space is discretized into cubic
lattice sites, and only nearest neighbor interactions are taken
into account. Boxes of 20�20�20 lattice sites and periodic
boundary conditions were used. Each box had the same ini-
tial composition and the initial configuration of each box was
random.

Only random particle exchanges were used to reach equi-
librium. An internal energy change �E was calculated for
each perturbation. The change was accepted when �E	0 or
with probability exp�−
�E� when �E�0, where 
= �kT�−1,
T the temperature and k is Boltzmann’s constant. This is
simply the Metropolis scheme to traverse phase space �1�.
Pseudorandom numbers were generated using the Mersenne
twister algorithm �18� which has a very large period and a
uniform distribution.

Interactions between unlike particles are described by the
parameter �:

� = 2�12 − �11 − �22 �3�

in which the �
 represents the energy of a contact between a
particle of type  and a particle of type 
. The reduced
temperature of the Ising system is defined as

T* =
kT

�
. �4�

�a was 0.50 to ensure that the interface is flat on average
after equilibration. A sample run is shown in Fig. 2. The
entire coexistence curve, together with the accurate Monte
Carlo results of Yan et al. from Ref. �10�, is depicted in Fig.
3. The two plots coincide over the entire concentration range.
Our method works surprisingly well near the critical point

FIG. 2. Sample run for the 3D Ising model at T*=1.0. The
volume fraction of component a is plotted against the sample rank-
ing number for each box individually. 105 swaps were attempted
between samples.

FIG. 3. Coexistence curves calculated by means of the
Helmholtz-ensemble method benchmarked against accurate results
by Yan et al. �10�. Used with permission from the authors.
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and the results are indistinguishable from Yan et al.’s Monte
Carlo data at lower T*.

A rerun of the Ising lattice at T*=0.8, but now for nine
boxes, yielded eight homogeneous boxes and only one box
containing an interface �Fig. 4�. This clearly corroborates our
prediction that as many boxes as possible will develop a
homogeneous phase due to the free energy contribution of an
interface.

The effect of �a on the equilibrium composition of the
homogeneous phases is shown in Fig. 5. Apparently, �a

B de-
pends significantly on the initial composition. This plot ex-
hibits a clear plateau at the correct composition around �a
=0.5, which is the region where we expect to find a surface
with vanishing average curvature. Significant errors are
found outside that plateau region, which is most likely due to
the formation of a curved interface. The errors continue to
grow if we move away from the plateau, since the further
away from the plateau, the smaller the phase droplets are,
and the Laplace pressure scales with the inverse radius of the
droplet.

The results shown in Fig. 5 indicate that the regime of flat
interfaces is narrower than predicted by our first-order esti-
mation. Still, it shows that a substantial volume fraction re-
gime exists where very accurate results can be obtained. Fi-
nally, it is noted that the possibility of the formation of a
curved interface does not limit the applicability of the
Helmholtz-ensemble method. If it is found that the interface
has a finite average curvature, then the overall composition

should be adjusted accordingly and the simulation should be
repeated. The Helmholtz-ensemble method is therefore ca-
pable of calculating phase coexistence for systems with sym-
metric interactions and for systems with asymmetric interac-
tions.

IV. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we introduce the Helmholtz-ensemble
method: a formalism to determine the composition of coex-
isting phases by a single Monte Carlo experiment. In contrast
with the Gibbs-ensemble method by Panagiotopoulos, vol-
ume changes are unnecessary. The present method is there-
fore especially useful for lattice models. Moreover, the
Helmholtz-ensemble method is both faster and more flexible
than current methods for lattice systems, which are usually
based on free energy calculations.

The phase coexistence points for a 3D Ising model that
were obtained with the Helmholtz-ensemble method are in
very close agreement with accurate results from existing lit-
erature. Although we benchmarked the method against a
simple lattice model system involving monomeric, isotropic
particles, the work presented here is easily extended to con-
tinuous and/or more complex models. We therefore expect
that the method presented here will be very useful to eluci-
date the phase behavior of, for instance, polymers and sur-
factants.
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